Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Curr Protoc ; 2(10): e521, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2047527

ABSTRACT

Antibody detection assays are essential for evaluating immunity of individuals against a given virus, and this has been particularly relevant during the COVID-19 pandemic. Current serology assays either require a laboratory setting and take >1 hr (i.e., enzyme-linked immunosorbent assay [ELISA]) or are rapid but only qualitative in nature and cannot accurately track antibody levels over time (i.e., lateral flow assay [LFA]). Therefore, there is a need for development of a rapid and simple but also quantitative assay that can evaluate antibody levels in patients accurately over time. We have developed an assay that uses a split nanoluciferase fused to the spike or nucleocapsid proteins of the SARS-CoV-2 virus to enable luminescent-based detection of spike- or nucleocapsid-binding antibodies in serum, plasma, and whole blood samples. The resulting approach is simple, rapid, and quantitative and is highly amenable to low-/medium-throughput scale using plate-based assays, high-throughput scale using robotics, and point-of-care applications. In this article, we describe how to perform the assay in a laboratory setting using a plate reader or liquid-handling robotics and in a point-of-care setting using a handheld, battery-powered luminometer. Together, these assays allow antibody detection to be easily performed in multiple settings by simplifying and reducing assay time in a laboratory or clinical environment and by allowing for antibody detection in point-of-care, nonlaboratory settings. © 2022 Wiley Periodicals LLC. Basic Protocol: SARS-CoV-2 antibody detection using the split-luciferase assay on a medium-throughput scale with a laboratory luminometer Alternate Protocol 1: High-throughput-based protocol for SARS-CoV-2 antibody detection using a robotic platform Alternate Protocol 2: Point-of-care-based protocol for SARS-CoV-2 antibody detection using a handheld luminometer Support Protocol: Determining positive/negative cutoffs for test samples and standardizing the assay between days.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral/analysis , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Humans , Luciferases , Nucleocapsid Proteins , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
2.
Sci Adv ; 7(31)2021 Jul.
Article in English | MEDLINE | ID: covidwho-1334521

ABSTRACT

Interpretation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveillance studies is limited by poorly defined performance of antibody assays over time in individuals with different clinical presentations. We measured antibody responses in plasma samples from 128 individuals over 160 days using 14 assays. We found a consistent and strong effect of disease severity on antibody magnitude, driven by fever, cough, hospitalization, and oxygen requirement. Responses to spike protein versus nucleocapsid had consistently higher correlation with neutralization. Assays varied substantially in sensitivity during early convalescence and time to seroreversion. Variability was dramatic for individuals with mild infection, who had consistently lower antibody titers, with sensitivities at 6 months ranging from 33 to 98% for commercial assays. Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on infection severity, timing, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.

3.
Nat Biotechnol ; 39(8): 928-935, 2021 08.
Article in English | MEDLINE | ID: covidwho-1152862

ABSTRACT

Current serology tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies mainly take the form of enzyme-linked immunosorbent assays, chemiluminescent microparticle immunoassays or lateral flow assays, which are either laborious, expensive or lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost, solution-based assay to detect antibodies in serum, plasma, whole blood and to a lesser extent saliva, using rationally designed split luciferase antibody biosensors. This new assay, which generates quantitative results in 30 min, substantially reduces the complexity and improves the scalability of coronavirus disease 2019 (COVID-19) antibody tests. This assay is well-suited for point-of-care, broad population testing, and applications in low-resource settings, for monitoring host humoral responses to vaccination or viral infection.


Subject(s)
Antibodies, Viral/blood , Biosensing Techniques/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Systems , SARS-CoV-2/immunology , COVID-19/virology , Humans , Luminescence
4.
MAbs ; 13(1): 1893426, 2021.
Article in English | MEDLINE | ID: covidwho-1118886

ABSTRACT

Numerous neutralizing antibodies that target SARS-CoV-2 have been reported, and most directly block binding of the viral Spike receptor-binding domain (RBD) to angiotensin-converting enzyme II (ACE2). Here, we deliberately exploit non-neutralizing RBD antibodies, showing they can dramatically assist in neutralization when linked to neutralizing binders. We identified antigen-binding fragments (Fabs) by phage display that bind RBD, but do not block ACE2 or neutralize virus as IgGs. When these non-neutralizing Fabs were assembled into bispecific VH/Fab IgGs with a neutralizing VH domain, we observed a ~ 25-fold potency improvement in neutralizing SARS-CoV-2 compared to the mono-specific bi-valent VH-Fc alone or the cocktail of the VH-Fc and IgG. This effect was epitope-dependent, reflecting the unique geometry of the bispecific antibody toward Spike. Our results show that a bispecific antibody that combines both neutralizing and non-neutralizing epitopes on Spike-RBD is a promising and rapid engineering strategy to improve the potency of SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Epitopes/immunology , Immunoglobulin Fab Fragments/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Bispecific/genetics , Antibodies, Bispecific/therapeutic use , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/genetics , Antibodies, Viral/therapeutic use , COVID-19/genetics , Epitopes/genetics , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Drug Treatment
5.
mSphere ; 5(5)2020 09 16.
Article in English | MEDLINE | ID: covidwho-772263

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual's seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies.IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Peptidyl-Dipeptidase A/immunology , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Antigens, Viral/immunology , Binding Sites/immunology , COVID-19 , Coronavirus Infections/prevention & control , High-Throughput Screening Assays/methods , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Protein Binding , Protein Domains/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL